1/8r-(6+2r)=-3

Simple and best practice solution for 1/8r-(6+2r)=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/8r-(6+2r)=-3 equation:



1/8r-(6+2r)=-3
We move all terms to the left:
1/8r-(6+2r)-(-3)=0
Domain of the equation: 8r!=0
r!=0/8
r!=0
r∈R
We add all the numbers together, and all the variables
1/8r-(2r+6)-(-3)=0
We add all the numbers together, and all the variables
1/8r-(2r+6)+3=0
We get rid of parentheses
1/8r-2r-6+3=0
We multiply all the terms by the denominator
-2r*8r-6*8r+3*8r+1=0
Wy multiply elements
-16r^2-48r+24r+1=0
We add all the numbers together, and all the variables
-16r^2-24r+1=0
a = -16; b = -24; c = +1;
Δ = b2-4ac
Δ = -242-4·(-16)·1
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{10}}{2*-16}=\frac{24-8\sqrt{10}}{-32} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{10}}{2*-16}=\frac{24+8\sqrt{10}}{-32} $

See similar equations:

| 1.5-0.02x=-0.4 | | 10+1/8y=1 | | 10+(1/8)y=1 | | v+3.33=6.84 | | 3e=3=8 | | y+2.22=9.48 | | 2x+9(21)=252 | | 2(2x+9+21)/2=252 | | 2(2x+9+21)=252 | | 8x-2(3x-5)=11 | | 1/4x-1/2=35/8 | | 26=5(v+7)-8v | | -5u+2(u-2)=23 | | 20=7(w+8)-3w | | -24=6(w-9) | | 25+2h=5(h+2) | | 125=25n | | (3m-3)/3=3m-7 | | (3m-4)/3=3m-7 | | h=1.5=6 | | 6.3g+10=4.3g+18 | | -9-6x=-7-5x | | 5x+15/10=15 | | 5x+3=92=88 | | 2(x-1)+1=-9 | | 7x-42=x-36 | | 8x-49=x+70 | | F(-5)=3x+5 | | (6x+29)=(8x-7) | | x=-30x+6000 | | 3+6y=22+5y | | 7=-w+182 |

Equations solver categories