If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/8m+2/5+1/2m=3/8m
We move all terms to the left:
1/8m+2/5+1/2m-(3/8m)=0
Domain of the equation: 8m!=0
m!=0/8
m!=0
m∈R
Domain of the equation: 2m!=0
m!=0/2
m!=0
m∈R
Domain of the equation: 8m)!=0We add all the numbers together, and all the variables
m!=0/1
m!=0
m∈R
1/8m+1/2m-(+3/8m)+2/5=0
We get rid of parentheses
1/8m+1/2m-3/8m+2/5=0
We calculate fractions
64m^2/400m^2+(-150m+1)/400m^2+200m/400m^2=0
We multiply all the terms by the denominator
64m^2+(-150m+1)+200m=0
We add all the numbers together, and all the variables
64m^2+200m+(-150m+1)=0
We get rid of parentheses
64m^2+200m-150m+1=0
We add all the numbers together, and all the variables
64m^2+50m+1=0
a = 64; b = 50; c = +1;
Δ = b2-4ac
Δ = 502-4·64·1
Δ = 2244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2244}=\sqrt{4*561}=\sqrt{4}*\sqrt{561}=2\sqrt{561}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{561}}{2*64}=\frac{-50-2\sqrt{561}}{128} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{561}}{2*64}=\frac{-50+2\sqrt{561}}{128} $
| 20+6n=-2n+6 | | 180=2x+21+45 | | 20+30=-5(9x-10) | | -u+201=157 | | 30+10x=7x | | 286=-x+82 | | 180=66+x+79 | | 4-7x=7+8x | | 5a/8=-3/5 | | 180=x+58+95 | | 180=(x+20)+133+2x | | 69=-w+252 | | 4.8b=31.16 | | 4.58=3^x | | -2x-1/3=11/3 | | 14b=70 | | 8x+13=130 | | -48=2g | | 34x=(x-2)180 | | 45+2v=7v | | 6(1-7s)=16 | | 5=0.2x-0.3x-2 | | F(x)=x^2-16/6x | | 5y+2y+3y=0 | | {4.2b-0.5b}=31.16 | | 70+4x+12=7+9x | | -6(9-4f)=35 | | 2.3k=13.57 | | -5-11-h=+7 | | 3.5n=-21 | | 115=46t | | 1.4d=3.78 |