1/7x-1=1/5x+1

Simple and best practice solution for 1/7x-1=1/5x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7x-1=1/5x+1 equation:



1/7x-1=1/5x+1
We move all terms to the left:
1/7x-1-(1/5x+1)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 5x+1)!=0
x∈R
We get rid of parentheses
1/7x-1/5x-1-1=0
We calculate fractions
5x/35x^2+(-7x)/35x^2-1-1=0
We add all the numbers together, and all the variables
5x/35x^2+(-7x)/35x^2-2=0
We multiply all the terms by the denominator
5x+(-7x)-2*35x^2=0
Wy multiply elements
-70x^2+5x+(-7x)=0
We get rid of parentheses
-70x^2+5x-7x=0
We add all the numbers together, and all the variables
-70x^2-2x=0
a = -70; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-70)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-70}=\frac{0}{-140} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-70}=\frac{4}{-140} =-1/35 $

See similar equations:

| 263-x=4 | | 8-3(2x-3(x-2)+5)-2(4x-5)=0 | | 4/x+3=-12 | | 2×x+20=160 | | 30x-5=4x+15 | | 4t2−5t−1=0 | | 6(d+7)=-42 | | x/4*4=-9*4 | | -2.5x+18=1.5x-8 | | 242=81-x | | x/4+3-3=-12-3 | | 2=d-90/4 | | 19+9x=-7+10x | | 8y+16=-24 | | 5+4-5+3x8÷2=4 | | 1500-20x=3x | | 1500+20x=3x | | 3(n-52)=78 | | 1500=(x/120) | | 13=3+2v | | 4^x,x=2 | | 3u+25=7u-11 | | -3f=-4f+f | | 7/10x+10=110 | | -36=6x+3(-5x+6) | | w/10=18 | | 20=8+3n | | 7x2+5x-1=0 | | w/44=6/7 | | −3x−(−7)=−11 | | d/4=23 | | 1/3r-5=16 |

Equations solver categories