1/6x+x+2x=190

Simple and best practice solution for 1/6x+x+2x=190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+x+2x=190 equation:



1/6x+x+2x=190
We move all terms to the left:
1/6x+x+2x-(190)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/6x-190=0
We multiply all the terms by the denominator
3x*6x-190*6x+1=0
Wy multiply elements
18x^2-1140x+1=0
a = 18; b = -1140; c = +1;
Δ = b2-4ac
Δ = -11402-4·18·1
Δ = 1299528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1299528}=\sqrt{36*36098}=\sqrt{36}*\sqrt{36098}=6\sqrt{36098}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1140)-6\sqrt{36098}}{2*18}=\frac{1140-6\sqrt{36098}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1140)+6\sqrt{36098}}{2*18}=\frac{1140+6\sqrt{36098}}{36} $

See similar equations:

| T=7s+4 | | k+1/3=5/1/8 | | x2+4x+8=13 | | 12x+2=6x-1 | | 70=20t-18 | | 101-13x=0 | | 9d+1=100 | | |2x-3|=9-4x | | 2=11p-9 | | x2-2x+16=15 | | 1/2(x-14)=11+5x | | 89=5+21u | | 12+2x=4(-x+9)-60 | | x-20=20+x/ | | 20.00+5.50x=10.00+6.75x | | 54=j/4+48 | | 16(2.25)+1.75m=51.75 | | -5+6y+3=2(y-3)+4(y-1) | | 1.5x=42.03 | | 1.5x=2.03 | | A=7(3.14r2 | | x/189=1000 | | 17=32/k+13 | | 104+40+(12x+12)=180 | | 37/5-8=-y | | 1/3(n+4)=10 | | 1/2x+3/47=10 | | c+2=2(3.14)×4 | | 2(2x-10)+2=4x-18 | | 1/2(7x+8)=2x-5 | | 6(4x+5)=(4x+12) | | 1/2(8x+12)=2x-4 |

Equations solver categories