1/6x+2/3=1/3x-1

Simple and best practice solution for 1/6x+2/3=1/3x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+2/3=1/3x-1 equation:



1/6x+2/3=1/3x-1
We move all terms to the left:
1/6x+2/3-(1/3x-1)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x-1)!=0
x∈R
We get rid of parentheses
1/6x-1/3x+1+2/3=0
We calculate fractions
27x/162x^2+(-6x)/162x^2+12x/162x^2+1=0
We multiply all the terms by the denominator
27x+(-6x)+12x+1*162x^2=0
We add all the numbers together, and all the variables
39x+(-6x)+1*162x^2=0
Wy multiply elements
162x^2+39x+(-6x)=0
We get rid of parentheses
162x^2+39x-6x=0
We add all the numbers together, and all the variables
162x^2+33x=0
a = 162; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·162·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*162}=\frac{-66}{324} =-11/54 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*162}=\frac{0}{324} =0 $

See similar equations:

| y=-2/3+1 | | 2^1-x=3^x | | 0=3y+13 | | 4(2a-1=-10(a-5) | | 4x-(3+3)=38 | | 2x+6*0=2 | | 4x2+2=5x3 | | 2*0+6y=2 | | 2.0+6y=2 | | X2-6x+9=0 | | 1/3=p-1 | | X2-4x=0 | | (√x^2-4x)+(√2^x-4)=0 | | 1.5x=6=10 | | -x+0=-1 | | -0+y=-1 | | 4y=4*0+4 | | a(3a+2)^1/2+2(3a+2)^3/2=0 | | 8(2x+4)-9(4×+3)=0 | | a/3+5=14 | | 4*0=4x+4 | | -2x+2*0=8 | | -2*0+2y=8 | | 3x-3*0=-12 | | (x+2)^2(x+6)^3+(x+2)(x+6)^4=0 | | 3*0-3y=-12 | | 1/3x2-12=0 | | b/13-9b/13=64/13 | | 2^x^2-141/2=4 | | 2(3-5x)=24 | | 4x+5=2+21 | | 700=35*n |

Equations solver categories