1/6x+1/3=1/9x+2

Simple and best practice solution for 1/6x+1/3=1/9x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+1/3=1/9x+2 equation:



1/6x+1/3=1/9x+2
We move all terms to the left:
1/6x+1/3-(1/9x+2)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 9x+2)!=0
x∈R
We get rid of parentheses
1/6x-1/9x-2+1/3=0
We calculate fractions
486x^2/486x^2+81x/486x^2+(-54x)/486x^2-2=0
Fractions to decimals
81x/486x^2+(-54x)/486x^2-2+1=0
We multiply all the terms by the denominator
81x+(-54x)-2*486x^2+1*486x^2=0
Wy multiply elements
-972x^2+486x^2+81x+(-54x)=0
We get rid of parentheses
-972x^2+486x^2+81x-54x=0
We add all the numbers together, and all the variables
-486x^2+27x=0
a = -486; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·(-486)·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*-486}=\frac{-54}{-972} =1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*-486}=\frac{0}{-972} =0 $

See similar equations:

| 3x^2-10x=80 | | 25x+4x-13=9x | | x=2.5-1.25x | | 30x=3x-24 | | 12y+6y+8y=5y | | 3x+5.3=3.6 | | 2+x=13-4 | | 8y-45=19 | | 11z+8z=2 | | 98+x=-81 | | 46x-9x+15=18+8x+5x | | 45z-7z+4=10-3z-8z | | 38x+6x-4=10+5 | | 32z-6z-3=18-2z | | 112=7(m+3) | | 45x=15x-22 | | 5m+3=8m+5 | | 7=14*x | | 7x-23x+6=0 | | (X+5)÷x=22/12 | | 8a+2=16106 | | 3/7x+14=72 | | 4=5(p=2) | | 9b=18,b= | | 3x2-17x+22=0 | | t=41-10 | | 3p/4-8=1 | | (6x-7)(x+7)/x-6=0 | | 0x-2x=69-4 | | (3x-1)(x+2)(x^2-9)=0 | | (3x-1)(x+1)(x^2-9)=0 | | 5x-3÷8=12 |

Equations solver categories