If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6w+80=7w+80
We move all terms to the left:
1/6w+80-(7w+80)=0
Domain of the equation: 6w!=0We get rid of parentheses
w!=0/6
w!=0
w∈R
1/6w-7w-80+80=0
We multiply all the terms by the denominator
-7w*6w-80*6w+80*6w+1=0
Wy multiply elements
-42w^2-480w+480w+1=0
We add all the numbers together, and all the variables
-42w^2+1=0
a = -42; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-42)·1
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*-42}=\frac{0-2\sqrt{42}}{-84} =-\frac{2\sqrt{42}}{-84} =-\frac{\sqrt{42}}{-42} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*-42}=\frac{0+2\sqrt{42}}{-84} =\frac{2\sqrt{42}}{-84} =\frac{\sqrt{42}}{-42} $
| -4(6-5x)=36 | | (4x+25)=(1/x) | | 4x(x-3)=2x+4 | | 31x-7x^2=0 | | 0.1r-1=6 | | -5d-10=9-7+7d | | 12n=2n+6 | | 8c+2=-8+7c | | -10m-4=m | | x+x²=158 | | -1+8t=3t+9 | | 3x-6=2x6 | | -8+2z=9+7z-2 | | -7f+7=3-5f-8 | | 3/5(a-6}=15 | | 8-(2b+3)=b-16 | | 4(x-5)=-2x+40 | | 1/5(k-3=3/4 | | 4d-3.50=32.50-2d | | 4d-3.50=32.50+2d | | 28x-1=27x+2 | | -10=-4+7m | | 6=11+z/3 | | 2(4d-3.50)=32.50 | | (X+9)+(x+6)=195 | | x5x+41=66 | | 2(x+2)=(x+4)+18 | | 4d-3.50+2=32.50 | | 7x-3(5x+2)=-94 | | 2(y-7)+18y=4y-50 | | 3.4+10m=8.72 | | x+24+8=2(x+8) |