1/6d+2/3=1/4d-5

Simple and best practice solution for 1/6d+2/3=1/4d-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6d+2/3=1/4d-5 equation:



1/6d+2/3=1/4d-5
We move all terms to the left:
1/6d+2/3-(1/4d-5)=0
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
Domain of the equation: 4d-5)!=0
d∈R
We get rid of parentheses
1/6d-1/4d+5+2/3=0
We calculate fractions
192d^2/216d^2+36d/216d^2+(-54d)/216d^2+5=0
We multiply all the terms by the denominator
192d^2+36d+(-54d)+5*216d^2=0
Wy multiply elements
192d^2+1080d^2+36d+(-54d)=0
We get rid of parentheses
192d^2+1080d^2+36d-54d=0
We add all the numbers together, and all the variables
1272d^2-18d=0
a = 1272; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·1272·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*1272}=\frac{0}{2544} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*1272}=\frac{36}{2544} =3/212 $

See similar equations:

| 6y+18=y+12-3y | | 2/5(3x-1)=1/4(4x+5) | | 3x=19+x | | 9+15=-3(3x-8) | | 4x+3/7=5x+5/7 | | (2x-4)/2=2x | | -u+1=245 | | 16-2t=t+8+4t | | x/5+6/5=x7+8/7 | | 12h/3-1/4=1/3 | | 8(x+3)-6=18 | | 3/5=h+1/3 | | 0=4v+6v | | | | | | 4+16=-2(6x-10) | | x+8/7=x+6/5 | | 4+16=-2(6x-10 | | P=2(5x+5x-4) | | 4(3x+8)=-45+53 | | 5(2x+9)=-11+41 | | −(8+12k)=−2(8k−4) | | 2(9n-6)+52=2(7n+8 | | 4=t/5 | | 7+x-3=17 | | .06=1^x | | 5(2x+8)=-11+41 | | x(x+4)=x²-12 | | 5=7w+8+2 | | 3y+10=5y-14 | | 4(2c-1)-5=6c+3 | | 7x+6-2(x+19)=38 |

Equations solver categories