1/6d+2/3=1/4(d)

Simple and best practice solution for 1/6d+2/3=1/4(d) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6d+2/3=1/4(d) equation:



1/6d+2/3=1/4(d)
We move all terms to the left:
1/6d+2/3-(1/4(d))=0
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
Domain of the equation: 4d)!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
1/6d-(+1/4d)+2/3=0
We get rid of parentheses
1/6d-1/4d+2/3=0
We calculate fractions
192d^2/216d^2+36d/216d^2+(-54d)/216d^2=0
We multiply all the terms by the denominator
192d^2+36d+(-54d)=0
We get rid of parentheses
192d^2+36d-54d=0
We add all the numbers together, and all the variables
192d^2-18d=0
a = 192; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·192·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*192}=\frac{0}{384} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*192}=\frac{36}{384} =3/32 $

See similar equations:

| -7x+1/2=-83/2-× | | 2x-2÷-7=-10 | | -11=-(6-4p)-5(1+6p) | | 2u-8=-4u=4 | | 17.6=4n-1 | | 2x^2+3(x^2-1)=5x(x+1) | | -14=4(2p+1)-5p | | 8n-(12n-3)=12 | | 7+7x=4x-15 | | -6(8×+4)=-8(6k+3)-2 | | 9x+4x=18-12 | | I=d7.5/d4.5 | | 14=5x-7x | | 1÷2x=15 | | 85=-5(-1-4b)-4b | | -7+7x=-4x-15 | | 17x-18/6-16x=1/6+9/6 | | f+542=1739 | | 5x-26-4=-50 | | 3u^2+5u=2 | | 2x(x^2-7x-3)=0 | | -x+9=1-4x+4x | | -3(3+k)+3(5k+1)=-54 | | 9x-5+53=12x-1 | | -x+7=3x-13 | | 9=3y37+4y | | 8+6y=62 | | ​ g-3/7=2/7 | | 7y+46=0 | | 8+y(6)=62 | | 5(x+1)+51=3x | | 1/2(6y+4)-9=-1/5(5y-45) |

Equations solver categories