If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6(9-4)=1/3(2a+4)
We move all terms to the left:
1/6(9-4)-(1/3(2a+4))=0
Domain of the equation: 3(2a+4))!=0We add all the numbers together, and all the variables
a∈R
-(1/3(2a+4))+1/65=0
We calculate fractions
()/390a+(3a2/390a=0
We multiply all the terms by the denominator
(3a2+()=0
We calculate terms in parentheses: +(3a2+(), so:a = 3; b = 0; c = 0;
3a2+(
We add all the numbers together, and all the variables
3a^2
Back to the equation:
+(3a^2)
Δ = b2-4ac
Δ = 02-4·3·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$a=\frac{-b}{2a}=\frac{0}{6}=0$
| 4y+28-6y=24 | | n/3+10=15 | | G(-3)=-2x+5 | | -1+0.12x=0.095x-0.9 | | 75=0.71=0.86x | | -2q−4=-3q | | 2x+20+40=180 | | 2x+5÷=4-x | | 180-57=x | | -5c=-2c−9 | | 7+4x-2x=-5+x-8 | | 2(4z-2)=2(4z−2)=4444 | | 100+57+x=180 | | 0.4x+1.2=-0.8+0.15x | | -7+9r=10r | | -2-9k=-10k | | 15x-2x-5=3x+10 | | x/(x+12)=6/10 | | (5x+9)(2x+7)=10x+53x+63 | | x/x+12=6/10 | | (2x)^2+(3x)^2=√117^2 | | (2x)^2+(3x)^2=√117)^2 | | 7+3x=-2x-8 | | (2x)^2+(3x)^2=√(117)^2 | | y/5-6=-31 | | (2x)^2+(3x)^2=(117) | | 3(28)-y=28 | | 5j−3j=2 | | 4x+1=113 | | A=2475+0,01*x | | (12x+2)+(4x-2)+(7x-4)=180 | | f(2)=-4-3 |