1/5x-31/10=7/4x

Simple and best practice solution for 1/5x-31/10=7/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-31/10=7/4x equation:



1/5x-31/10=7/4x
We move all terms to the left:
1/5x-31/10-(7/4x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x-(+7/4x)-31/10=0
We get rid of parentheses
1/5x-7/4x-31/10=0
We calculate fractions
(-2480x^2)/200x^2+40x/200x^2+(-350x)/200x^2=0
We multiply all the terms by the denominator
(-2480x^2)+40x+(-350x)=0
We get rid of parentheses
-2480x^2+40x-350x=0
We add all the numbers together, and all the variables
-2480x^2-310x=0
a = -2480; b = -310; c = 0;
Δ = b2-4ac
Δ = -3102-4·(-2480)·0
Δ = 96100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{96100}=310$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-310)-310}{2*-2480}=\frac{0}{-4960} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-310)+310}{2*-2480}=\frac{620}{-4960} =-1/8 $

See similar equations:

| 4+k=-14 | | J=2x-5(-7-4x) | | 9x=(x+4) | | 0.5t+0.25(t16)=4+0.75t | | 13+6n=-4n+(1+n) | | 2(2q-2)-1=4(1-q)-1 | | -9+5x=x-29 | | 1000(679041-0.8y)+800y=679041 | | -4(x-5)+3x-1=-13 | | 128=172-y | | (-1x)•(1)(-1)(-1)=(-1) | | 8x-3x+96=8x+36 | | -7/3h+13=2/3h-6 | | 3w=729 | | 180=4x-7+3x+9 | | −3(2x−1)+5=−25+5x | | 7x-3x-1=4x+6 | | 163=-x+283 | | 4x-17°=2x+23 | | 180°=90°+2x+8x | | (-1x)•(1)(-1)(-1)=(-1)(-1) | | 131-v=223 | | 5/8x-5=7/8x+3 | | 2x+1+1/3=6 | | -7x10=-3x46 | | xx4x8=128 | | 165=-u+55 | | 12m-35=26 | | 165=-u=55 | | 1/2x+8=x-2 | | 1x+1+1+2/3=4 | | 0.5x+1.1=2.3 |

Equations solver categories