1/5x+5(x)=7x-18

Simple and best practice solution for 1/5x+5(x)=7x-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+5(x)=7x-18 equation:



1/5x+5(x)=7x-18
We move all terms to the left:
1/5x+5(x)-(7x-18)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
5x+1/5x-(7x-18)=0
We get rid of parentheses
5x+1/5x-7x+18=0
We multiply all the terms by the denominator
5x*5x-7x*5x+18*5x+1=0
Wy multiply elements
25x^2-35x^2+90x+1=0
We add all the numbers together, and all the variables
-10x^2+90x+1=0
a = -10; b = 90; c = +1;
Δ = b2-4ac
Δ = 902-4·(-10)·1
Δ = 8140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8140}=\sqrt{4*2035}=\sqrt{4}*\sqrt{2035}=2\sqrt{2035}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{2035}}{2*-10}=\frac{-90-2\sqrt{2035}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{2035}}{2*-10}=\frac{-90+2\sqrt{2035}}{-20} $

See similar equations:

| y=2y-3+y+12 | | 17x+29=5x+41 | | 9+12=-3(2x-7) | | 10x-7-(5x)=4x+6 | | 3(2x+8)=-40+10 | | 8+7=-3(4x-5) | | 13x-24=5x+48 | | 9x-4=4(x-1)-5x4 | | 5(4–2x)=35 | | 8y+6=3y–9 | | 9x-4=4(x+4 | | 1.5*(x)=9 | | 17=m+30 | | 5(2x+6)=-25+35 | | 22x-2+130=85x+2= | | 3x-6/15x+2=0 | | 23=9x=2-6x | | n+4×5=-15 | | X+40+x+100=120 | | -6=1/2q | | 6=15w-9w | | 75=2.5(x)+65 | | -4m+27=5m | | 5x+12+3x+5+8x+8+5x+10+4x+15=540 | | -10=12h | | 8x+27=3x+52 | | 1/5(x=8)=3/5x | | 7x-(3x-15)=51 | | i*(1+2i)^-1=-1/2i | | 3x^2-150x-9000=0 | | -16x+4-3(x-1)=-3x-(15x-2)+3 | | 12y+6=8y+6 |

Equations solver categories