1/5x+3x=42+2x

Simple and best practice solution for 1/5x+3x=42+2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+3x=42+2x equation:



1/5x+3x=42+2x
We move all terms to the left:
1/5x+3x-(42+2x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x+3x-(2x+42)=0
We add all the numbers together, and all the variables
3x+1/5x-(2x+42)=0
We get rid of parentheses
3x+1/5x-2x-42=0
We multiply all the terms by the denominator
3x*5x-2x*5x-42*5x+1=0
Wy multiply elements
15x^2-10x^2-210x+1=0
We add all the numbers together, and all the variables
5x^2-210x+1=0
a = 5; b = -210; c = +1;
Δ = b2-4ac
Δ = -2102-4·5·1
Δ = 44080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44080}=\sqrt{16*2755}=\sqrt{16}*\sqrt{2755}=4\sqrt{2755}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-4\sqrt{2755}}{2*5}=\frac{210-4\sqrt{2755}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+4\sqrt{2755}}{2*5}=\frac{210+4\sqrt{2755}}{10} $

See similar equations:

| h-54=9 | | 360=-30s | | z−19=3 | | t+92=450 | | m/3=m+47 | | 2/3b-4=6 | | H(t)=-16t^2+348 | | f+43=97 | | 34=10-3w | | X=635-2x | | x+20+3x+4=8x-12 | | 8•x=22 | | x-3x-6=28 | | -7=9+w | | (16b3)=13 | | 4^(3w)-5=3 | | y-2.3=8.42 | | 8x-3x+3=2(x+6) | | p+67=93p= | | x+37=3 | | -7.2=5.6+x/8 | | 3-v=215 | | 24k+7=31 | | p+31/5=71/2 | | 25/x= | | 19-t=50 | | x3x=9 | | 190=111-v | | 14.7=b=7 | | 6.4x=76.8 | | 4/x=14 | | 5.4x=-18 |

Equations solver categories