1/5x+3=3/4x+1

Simple and best practice solution for 1/5x+3=3/4x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+3=3/4x+1 equation:



1/5x+3=3/4x+1
We move all terms to the left:
1/5x+3-(3/4x+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x+1)!=0
x∈R
We get rid of parentheses
1/5x-3/4x-1+3=0
We calculate fractions
4x/20x^2+(-15x)/20x^2-1+3=0
We add all the numbers together, and all the variables
4x/20x^2+(-15x)/20x^2+2=0
We multiply all the terms by the denominator
4x+(-15x)+2*20x^2=0
Wy multiply elements
40x^2+4x+(-15x)=0
We get rid of parentheses
40x^2+4x-15x=0
We add all the numbers together, and all the variables
40x^2-11x=0
a = 40; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·40·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*40}=\frac{0}{80} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*40}=\frac{22}{80} =11/40 $

See similar equations:

| -3/2=-2/3y-4/7 | | -8x-2x+13x+-20x=-17 | | 45-(3x+4)=3(x+9)+x | | x-x+3x-2x+3x=20 | | 3x-7=11,x= | | 2/3x+8=1/2 | | 6x+3x+2=360 | | 4-3x=3+4(2x-3 | | x−9(7)=−28−28 | | 8=8–3h | | x^2+(-14x)=(-48) | | 14x+-15x=3 | | (5x+2)(3x+4)=(7x+7) | | -3x+19x+6x-6x+-9x=-7 | | H33+c=54 | | 6+3n=32 | | 18x+x-18x=10 | | Y=30x+600 | | 7x+3x-4x=18 | | 27+9=12+4x | | -6(2b+7=17+3b | | 4x-3x+x+4x+3x=9 | | 3x°-5x-2=0 | | 7x=2x+(-15) | | 23=49–7x | | 2(x+4)^2-3=69 | | 11x-8x-2x+3x=8 | | 4K-5=2k+15 | | -14+4b=-2 | | -2/7+k=-5/9 | | -2u+3=-1 | | 13x-11x=14 |

Equations solver categories