1/5x+3=25x+3

Simple and best practice solution for 1/5x+3=25x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+3=25x+3 equation:



1/5x+3=25x+3
We move all terms to the left:
1/5x+3-(25x+3)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
1/5x-25x-3+3=0
We multiply all the terms by the denominator
-25x*5x-3*5x+3*5x+1=0
Wy multiply elements
-125x^2-15x+15x+1=0
We add all the numbers together, and all the variables
-125x^2+1=0
a = -125; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-125)·1
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*-125}=\frac{0-10\sqrt{5}}{-250} =-\frac{10\sqrt{5}}{-250} =-\frac{\sqrt{5}}{-25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*-125}=\frac{0+10\sqrt{5}}{-250} =\frac{10\sqrt{5}}{-250} =\frac{\sqrt{5}}{-25} $

See similar equations:

| 39=-3k | | 345x=0.345 | | C(t)=-0.45t^2+12t+450 | | 41/2+q=912/2 | | 6(-x-2)=18 | | x+13=-33 | | 4x–11=49 | | 13x+9=7x-18 | | x2–13x+40=0 | | 1.5/x=0.2 | | 180=14x+3+15x-5 | | -10=j+-19 | | -10=j+-9 | | 2x+3-4x=20 | | 5x-5=10 | | 4a+3–a=-7+2+a | | 5+7^(-6+2w)=13 | | (x+5)(x+5)=59 | | 3.a+5a=-7 | | -19c=-190 | | 5x-13/x-5=3 | | 1/2(5-p)=2p-3 | | 3.2x=3200 | | 4.2=-5x+16.7 | | 9.5-2.8+a=20.2 | | -½(4m-4)=-4(2m+4) | | 6x+8+4x+1+73=180 | | 96=-6-6r | | 48x=74=110 | | -3x-10=-4x+50 | | 36=9|r| | | 19=11+4x |

Equations solver categories