1/5x+3/10x=5/2

Simple and best practice solution for 1/5x+3/10x=5/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+3/10x=5/2 equation:



1/5x+3/10x=5/2
We move all terms to the left:
1/5x+3/10x-(5/2)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x+3/10x-(+5/2)=0
We get rid of parentheses
1/5x+3/10x-5/2=0
We calculate fractions
(-250x^2)/200x^2+40x/200x^2+60x/200x^2=0
We multiply all the terms by the denominator
(-250x^2)+40x+60x=0
We add all the numbers together, and all the variables
(-250x^2)+100x=0
We get rid of parentheses
-250x^2+100x=0
a = -250; b = 100; c = 0;
Δ = b2-4ac
Δ = 1002-4·(-250)·0
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10000}=100$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100}{2*-250}=\frac{-200}{-500} =2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100}{2*-250}=\frac{0}{-500} =0 $

See similar equations:

| -102=-6(1-2k) | | (z^2)-5)^2+6((z^2)-5)-40=0 | | 2/3x-1/2+1=5 | | (z^2)-5)+6((z^2)-5)-40=0 | | 305=40k-175 | | 2/3x=4.5 | | 2-j=15 | | 8x+3=8x27 | | 13.75+x-0.04=20.80 | | 5/28=r/36 | | f-7/2=4 | | -x+8/11=6(4-x)/2 | | 3x+7=11x+31 | | -23=5-8x-6x | | 34-120w=6w+2 | | p=14-6 | | L=3x | | 4m+35=5-(7m+3) | | 24+6v=9v | | 5-4y+y-2=-23 | | 3-2m=25 | | 4^3x=16^-x | | 6=4y/8 | | 2(3-4p)-(1+3p)=-6 | | L=2x+8 | | -7+5n-8n=n+3+n | | 14-(2q+5)=-2+9q | | x^-5=72 | | 2=4x-2x-10 | | 21q=10 | | 3w-5=-8(6+5w) | | 21q11=10 |

Equations solver categories