1/5x+13+x=1-9x+22=10

Simple and best practice solution for 1/5x+13+x=1-9x+22=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+13+x=1-9x+22=10 equation:



1/5x+13+x=1-9x+22=10
We move all terms to the left:
1/5x+13+x-(1-9x+22)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x+x-(-9x+23)+13=0
We add all the numbers together, and all the variables
x+1/5x-(-9x+23)+13=0
We get rid of parentheses
x+1/5x+9x-23+13=0
We multiply all the terms by the denominator
x*5x+9x*5x-23*5x+13*5x+1=0
Wy multiply elements
5x^2+45x^2-115x+65x+1=0
We add all the numbers together, and all the variables
50x^2-50x+1=0
a = 50; b = -50; c = +1;
Δ = b2-4ac
Δ = -502-4·50·1
Δ = 2300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2300}=\sqrt{100*23}=\sqrt{100}*\sqrt{23}=10\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{23}}{2*50}=\frac{50-10\sqrt{23}}{100} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{23}}{2*50}=\frac{50+10\sqrt{23}}{100} $

See similar equations:

| 0.5x-0.2(4)=2.7 | | 17k-8k-8k=12 | | 11=24x | | -7-4k=-11k+8k | | 7x^2+58x=0 | | 38b=23674 | | 2p-9=19 | | x^2-2x-518=0 | | r+2r-r=16 | | 8=2*h*2 | | 8+6x+4=3(10+x) | | 1/5x+1x+9x=10 | | r—5.97/4=3.44 | | 11n+3n+4n-14n-3n=20 | | 12x^2-120x+900=0 | | 13x-80=90 | | 9y+-10y=15 | | S=144+128t-16t^2 | | r-5.97/4=3.44 | | 8=2h2 | | 2a+5a-4a-a=14 | | x²-2x-518=0 | | 18b-4b-12b+b-2b=17 | | 4=2*h*1 | | 18.67+11.5q=11.1q+13.83 | | 0m+8=7m+17 | | (x-4)/21=(6/7)-((x-7)/14) | | 8b+4b+b+4b-15b=8 | | |2x+15|=36 | | 6(f-86)=12 | | 3+4x+75=180 | | 4=-5/8+u |

Equations solver categories