1/5x+10=2/3x-7

Simple and best practice solution for 1/5x+10=2/3x-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x+10=2/3x-7 equation:



1/5x+10=2/3x-7
We move all terms to the left:
1/5x+10-(2/3x-7)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x-7)!=0
x∈R
We get rid of parentheses
1/5x-2/3x+7+10=0
We calculate fractions
3x/15x^2+(-10x)/15x^2+7+10=0
We add all the numbers together, and all the variables
3x/15x^2+(-10x)/15x^2+17=0
We multiply all the terms by the denominator
3x+(-10x)+17*15x^2=0
Wy multiply elements
255x^2+3x+(-10x)=0
We get rid of parentheses
255x^2+3x-10x=0
We add all the numbers together, and all the variables
255x^2-7x=0
a = 255; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·255·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*255}=\frac{0}{510} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*255}=\frac{14}{510} =7/255 $

See similar equations:

| 9+2×x-6=17 | | 17=5y+2 | | 4t2+9t+4=0 | | 3/2x-7=3/2 | | v/3+8=14 | | 6+5w=21 | | -5(y+2.0)=25 | | 21+6b=75 | | 7x+12=12x-8 | | 13+14x=-1+7x | | Y=x+-23 | | -17=2/3r | | -4=-5/6b | | 5(22p+1)-17(2p)+3=0 | | 2(3x+5)+3x+3=20 | | 7(2y-10)=20 | | X=3x2+111 | | 3(1,2b-1)+3.6=4.2 | | 2(3x−5)+3x+3= | | –3+–2k=9 | | 5(4x14)=13x= | | -3y=12=-48 | | 5(4x-14)=13 | | 210=6(5x+5 | | 4(-5n+11)=-4(5n-7) | | 17x-20=75=59 | | y=-42х-3y=8 | | У=-42х-3y=8 | | 6(2x-11)=12 | | 5x+2=87=39 | | 3(0.3+0.1)=+2x | | 5(2^(2p+1))-17(2^p)+3=0 |

Equations solver categories