If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5q=q-2/5q
We move all terms to the left:
1/5q-(q-2/5q)=0
Domain of the equation: 5q!=0
q!=0/5
q!=0
q∈R
Domain of the equation: 5q)!=0We add all the numbers together, and all the variables
q!=0/1
q!=0
q∈R
1/5q-(+q-2/5q)=0
We get rid of parentheses
1/5q-q+2/5q=0
We multiply all the terms by the denominator
-q*5q+1+2=0
We add all the numbers together, and all the variables
-q*5q+3=0
Wy multiply elements
-5q^2+3=0
a = -5; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-5)·3
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-5}=\frac{0-2\sqrt{15}}{-10} =-\frac{2\sqrt{15}}{-10} =-\frac{\sqrt{15}}{-5} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-5}=\frac{0+2\sqrt{15}}{-10} =\frac{2\sqrt{15}}{-10} =\frac{\sqrt{15}}{-5} $
| -4+n=-43 | | 6x-5/4=5 | | 4(a-4)=2(-5) | | 21=x/5+56 | | 9x-4/4=-5 | | 9x-4/4=5 | | F(x)=2x3+3x2-40 | | 18-n=8.55 | | 2x-17=-(-4) | | Y=2x/x+1 | | 5a+10=-(6a-2) | | z/2=z+7/10 | | x^2+20x-192=0 | | z/2=z | | 1.25=-2.5x | | 6x−4=44 | | 5t-3=3t-5= | | -21=9+6x | | xX5=6 | | -2.5=(x-17)/6 | | -2x+10=-19 | | 3x-5/4=2x+1/4 | | (x+6)-(5-2x)+2x=0 | | 11n+9=0 | | 0.25m+15=0.005m+20 | | 7=49/x | | 4x^2-25-21=0 | | 12/4x+3=3/x-3 | | 7-2x+5-11x=6x-5x-2-4x-16 | | 12n+5=0 | | (2080x)+(390x)+(416x)=110000 | | 6(2x)=4x+12 |