If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5k-1/6=4/3k
We move all terms to the left:
1/5k-1/6-(4/3k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 3k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
1/5k-(+4/3k)-1/6=0
We get rid of parentheses
1/5k-4/3k-1/6=0
We calculate fractions
(-45k^2)/540k^2+108k/540k^2+(-720k)/540k^2=0
We multiply all the terms by the denominator
(-45k^2)+108k+(-720k)=0
We get rid of parentheses
-45k^2+108k-720k=0
We add all the numbers together, and all the variables
-45k^2-612k=0
a = -45; b = -612; c = 0;
Δ = b2-4ac
Δ = -6122-4·(-45)·0
Δ = 374544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{374544}=612$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-612)-612}{2*-45}=\frac{0}{-90} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-612)+612}{2*-45}=\frac{1224}{-90} =-13+3/5 $
| -25=0.2h+-5 | | 10a=10.000.000.000 | | (7^(2x))+(7^x)-12=0 | | 2(x-4)=108 | | -26-6b=8 | | 7y+13=90 | | 3x12=24 | | 2n=4^n-1 | | 456+45x=789 | | 4^x=440 | | 1/4+x/2=5/2 | | 3/120=200/x | | 2=12p-39 | | 2x^=x | | 2=2/3x=1 | | 55-21=a | | 5+b-b=6 | | 2(x-9)^2=128 | | A23=11/8+1/2(n) | | 8x+6=37 | | (x+9)=-27 | | 2^2x+2.3^x=3 | | 125(x+15)=5 | | (5x+7)+(33)=90 | | 12x1.50=12 | | (x-5)(2x-18)=0 | | (x-5)(2x^-18)=0 | | 0.2=-81x | | P6+3m=-12 | | 20x+10=10x+3 | | 1.5x=99 | | 18x+96=180 |