1/5c+2/7=2-1/7c

Simple and best practice solution for 1/5c+2/7=2-1/7c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5c+2/7=2-1/7c equation:



1/5c+2/7=2-1/7c
We move all terms to the left:
1/5c+2/7-(2-1/7c)=0
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
Domain of the equation: 7c)!=0
c!=0/1
c!=0
c∈R
We add all the numbers together, and all the variables
1/5c-(-1/7c+2)+2/7=0
We get rid of parentheses
1/5c+1/7c-2+2/7=0
We calculate fractions
343c/1715c^2+5c/1715c^2+10c/1715c^2-2=0
We multiply all the terms by the denominator
343c+5c+10c-2*1715c^2=0
We add all the numbers together, and all the variables
358c-2*1715c^2=0
Wy multiply elements
-3430c^2+358c=0
a = -3430; b = 358; c = 0;
Δ = b2-4ac
Δ = 3582-4·(-3430)·0
Δ = 128164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{128164}=358$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(358)-358}{2*-3430}=\frac{-716}{-6860} =179/1715 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(358)+358}{2*-3430}=\frac{0}{-6860} =0 $

See similar equations:

| 2(3x+5)=35 | | 2x+1(3x+4)=25 | | 48x-2+10=8 | | 4x-2x=24-6 | | 3+1=-4(5x-1) | | 3+1=-4(5x-1 | | -18=a+(-3) | | 3(3x+5)-2=39 | | 3+1=4(5x-1) | | 3x-11-3x=3+6x-13 | | 8-5x-6-10x=5 | | –2=–9+x | | -2=–9+x | | X/7+x-1/3=2x-1/4²-1/21 | | 18-6x/12=9+2x | | 2(x+1)+4=15 | | –21+8r=7(3+2r) | | 0=16t(t-3) | | 11x-3x=86 | | 7a+6a=20 | | -13.8r+15.47+14.09=-18.4r-19.66 | | 4(x-8)+2x=10x | | 5a+4a=19 | | -1/5x+3/5=1/6 | | 2X^2+7x=5=0 | | 4a+3a=17 | | 2(x-8)+10=6x-6 | | 3x-7-4x=-(x+7) | | 2x+7=5x-(3x+9) | | 9x+6=2/3(8x) | | 9x+6=2/3(8) | | 8x=2/3(9x+6) |

Equations solver categories