1/5(50)(x2)=225

Simple and best practice solution for 1/5(50)(x2)=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5(50)(x2)=225 equation:



1/5(50)(x2)=225
We move all terms to the left:
1/5(50)(x2)-(225)=0
Domain of the equation: 550x2!=0
x^2!=0/550
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-225*550x2+1=0
Wy multiply elements
-123750x^2+1=0
a = -123750; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-123750)·1
Δ = 495000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{495000}=\sqrt{22500*22}=\sqrt{22500}*\sqrt{22}=150\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-150\sqrt{22}}{2*-123750}=\frac{0-150\sqrt{22}}{-247500} =-\frac{150\sqrt{22}}{-247500} =-\frac{\sqrt{22}}{-1650} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+150\sqrt{22}}{2*-123750}=\frac{0+150\sqrt{22}}{-247500} =\frac{150\sqrt{22}}{-247500} =\frac{\sqrt{22}}{-1650} $

See similar equations:

| 6x+39=114-9x | | x3=33/8 | | 15-2m=27 | | 15=2x=5+3x | | Y=6/5x+8/5(-5,4) | | 4b-11=3b | | (-2x²+3x-9)=(4x²-6x+9) | | 5(t+3)+9=3(t-2)+14. | | Y=6/5x+8/5 | | -14=-8y+5(y-7) | | x-3=64 | | 9(n+2)-5n=34 | | 12+43=4n+n | | 10=-8u+6(u+2) | | −1/2b=7/10-9/4 | | (6x-5)=(4x-3) | | x=18+11/4 | | -10+15z+8=8+4z+7 | | 12(1/2x-1/3)=8-2x | | F=7/5(n-36) | | d/2-4=15 | | 7-d=8 | | x+(-3)=-11 | | 9x+20=4x+50 | | 8x+2x=2(45) | | P=1.7t^2+18.75t+175 | | 24+x=-24 | | √​z​2​​+6z+3​​​=3z+1 | | 1/5d=71 | | 0=6x^2-17x-28 | | 6z-3=94z | | Y=-3.5x^2-0.5x+65 |

Equations solver categories