If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5(25x-40)=3/4(16x+8)
We move all terms to the left:
1/5(25x-40)-(3/4(16x+8))=0
Domain of the equation: 5(25x-40)!=0
x∈R
Domain of the equation: 4(16x+8))!=0We calculate fractions
x∈R
(4x1/(5(25x-40)*4(16x+8)))+(-15x2/(5(25x-40)*4(16x+8)))=0
We calculate terms in parentheses: +(4x1/(5(25x-40)*4(16x+8))), so:
4x1/(5(25x-40)*4(16x+8))
We multiply all the terms by the denominator
4x1
We add all the numbers together, and all the variables
4x
Back to the equation:
+(4x)
We calculate terms in parentheses: +(-15x2/(5(25x-40)*4(16x+8))), so:We get rid of parentheses
-15x2/(5(25x-40)*4(16x+8))
We multiply all the terms by the denominator
-15x2
We add all the numbers together, and all the variables
-15x^2
Back to the equation:
+(-15x^2)
-15x^2+4x=0
a = -15; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-15)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-15}=\frac{-8}{-30} =4/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-15}=\frac{0}{-30} =0 $
| 2(x+3)+5x=3(2x-1 | | 11^2=x*(x+9) | | 9x+18=9x+18 | | 11^2=x+(x+9) | | -8m-14m=18 | | w+4/5=4/1/5 | | -7t=-9t=4 | | x/10+9=-4 | | 3x-21=3x-13 | | -14g-11g=-18 | | 5x^28=x | | h-20/1=0 | | 32-4d=20 | | 3(h+2)+4h=-2 | | 18=14–a/2 | | 5x+13=82 | | x-7=33.5 | | 5c-20=-30 | | 57-4z=5(z-3) | | 2/m=1 | | 9x+2=9x+11 | | 4x^+x=0 | | 3u-2u=10 | | 5v7=10 | | 48-3t=21 | | n+87=173 | | 4u-6=-10 | | 0,5c-2=-3 | | -2/p=1 | | x/2+1/5x=1/3 | | 7(10x=2)=434 | | 81^5x=27^x+4 |