1/4y+9=1/9y.

Simple and best practice solution for 1/4y+9=1/9y. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4y+9=1/9y. equation:



1/4y+9=1/9y.
We move all terms to the left:
1/4y+9-(1/9y.)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 9y.)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
1/4y-(+1/9y.)+9=0
We get rid of parentheses
1/4y-1/9y.+9=0
We calculate fractions
9y/36y^2+(-4y)/36y^2+9=0
We multiply all the terms by the denominator
9y+(-4y)+9*36y^2=0
Wy multiply elements
324y^2+9y+(-4y)=0
We get rid of parentheses
324y^2+9y-4y=0
We add all the numbers together, and all the variables
324y^2+5y=0
a = 324; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·324·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*324}=\frac{-10}{648} =-5/324 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*324}=\frac{0}{648} =0 $

See similar equations:

| 2b-1=2(b-3) | | L+Lx3+Lx3+25=2125 | | 135=1.08x | | 2(x-5)+5=13 | | -7(a-3)-4a=98 | | 3.8r=57 | | m+2.13=2.25 | | 4^2^x^-7=64 | | -5/8b=1- | | Y=50x+375 | | 15+7k=2k^2 | | 15-4x=0,5x-12 | | 15+7k=2k*2 | | |10+7n|=3 | | 2=3/x/2-2/3/x | | 5-8x+4x=-23 | | 3x+7-5(x+1)=7x+4 | | 7x+24=+3x+92=180 | | |3x+5|+12=7x-12 | | 2+2/3/x=3/x/2 | | 3x-42=286-x | | 6(u+4)+4u=-26 | | 8x+5=5(x+10) | | 4r+2=3r-7 | | 10u=-26 | | 3+12=-3(4x-5) | | (6x)(8x)=(9)(7) | | 4(–y–15)=2y–6 | | -14+54=-5(x+6) | | 9(x+9)+5=86 | | 20+4=-3(4x-8) | | v+v-v=0 |

Equations solver categories