1/4y+7=23-1/12y

Simple and best practice solution for 1/4y+7=23-1/12y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4y+7=23-1/12y equation:



1/4y+7=23-1/12y
We move all terms to the left:
1/4y+7-(23-1/12y)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 12y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
1/4y-(-1/12y+23)+7=0
We get rid of parentheses
1/4y+1/12y-23+7=0
We calculate fractions
12y/48y^2+4y/48y^2-23+7=0
We add all the numbers together, and all the variables
12y/48y^2+4y/48y^2-16=0
We multiply all the terms by the denominator
12y+4y-16*48y^2=0
We add all the numbers together, and all the variables
16y-16*48y^2=0
Wy multiply elements
-768y^2+16y=0
a = -768; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-768)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-768}=\frac{-32}{-1536} =1/48 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-768}=\frac{0}{-1536} =0 $

See similar equations:

| (10x-2)=(9+5) | | -15-1,2y=42,6+3,6y | | -3x-23=5x+17 | | a3 | | 5-8x=-7 | | 2x+14=x–8 | | 7-4(1-x)=7x | | 2.5x-4=4x-0.25 | | 5(x-2)=3(x-5) | | y+3/4=8 | | 1.3x+8=3x+11 | | -0.05x=3 | | 132.50=8.50m+2.75(21-m) | | 0.2x-2=0.25x+1 | | (1/5)*x-2=(1/4)*x+1 | | s=114-159 | | 1/2*x-2=1/4*x+1 | | 26/16=x/2 | | 5*(x+2)=2*(x+1) | | 3*(x+1)=2*(x+0.5) | | 2*(x+3)-2=0 | | x/10+1/2=1 | | x*x-x=-30 | | 3x=100-50 | | -7x+4=−10x−14 | | -4+3x=23-18 | | x*x-5=(-5)*(-4) | | 6+3x–4=–5x | | (8x5)=(4x-17) | | (4-8)*(4-8)=x | | 2x–4=4x+6 | | 1/r=1/30+1/60 |

Equations solver categories