1/4x-5=1/6x+3

Simple and best practice solution for 1/4x-5=1/6x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-5=1/6x+3 equation:



1/4x-5=1/6x+3
We move all terms to the left:
1/4x-5-(1/6x+3)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x+3)!=0
x∈R
We get rid of parentheses
1/4x-1/6x-3-5=0
We calculate fractions
6x/24x^2+(-4x)/24x^2-3-5=0
We add all the numbers together, and all the variables
6x/24x^2+(-4x)/24x^2-8=0
We multiply all the terms by the denominator
6x+(-4x)-8*24x^2=0
Wy multiply elements
-192x^2+6x+(-4x)=0
We get rid of parentheses
-192x^2+6x-4x=0
We add all the numbers together, and all the variables
-192x^2+2x=0
a = -192; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-192)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-192}=\frac{-4}{-384} =1/96 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-192}=\frac{0}{-384} =0 $

See similar equations:

| 14/20=x/14 | | 42-3x=60+x | | x/5x-3=3/16 | | 5×+3y=92×+3y=12 | | F(x)=|x-6|+8 | | 16x^2-9x=576 | | -4=4/5n | | p/4=72 | | 5-3x=8+4x | | 19=5v+9 | | (D^2+2D-3)y=0 | | 2^x+2^(x+4)=136 | | 7x-7=3x+12 | | 1/10+1/15=x | | (2x-50)/3=0 | | 1/7(3y+2)=4+1/3(y+2) | | 2(2x-3)-7x=18+5(x-2x) | | 300=1/2*h(50) | | 2(2x-3)-7=18+5(x-2x) | | X/y=25/13 | | 8(x-4)-2=2x+6(-5+x) | | 2/3x+5/3=1/3 | | 6x+22=8x+28 | | 6x-5=74 | | 12x^2-4-8=1 | | 2(x-1)=5(x-2 | | 5z-9=6z-5 | | -4-4y=6 | | 13b−12b−b+3b+4b=7 | | 7n-n+n+3n=20 | | 5z-z=16 | | 4(3a-4)-6(2a-1)=0 |

Equations solver categories