1/4x-5=1/6x+1

Simple and best practice solution for 1/4x-5=1/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-5=1/6x+1 equation:



1/4x-5=1/6x+1
We move all terms to the left:
1/4x-5-(1/6x+1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We get rid of parentheses
1/4x-1/6x-1-5=0
We calculate fractions
6x/24x^2+(-4x)/24x^2-1-5=0
We add all the numbers together, and all the variables
6x/24x^2+(-4x)/24x^2-6=0
We multiply all the terms by the denominator
6x+(-4x)-6*24x^2=0
Wy multiply elements
-144x^2+6x+(-4x)=0
We get rid of parentheses
-144x^2+6x-4x=0
We add all the numbers together, and all the variables
-144x^2+2x=0
a = -144; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-144)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-144}=\frac{-4}{-288} =1/72 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-144}=\frac{0}{-288} =0 $

See similar equations:

| 5+w=48 | | 3x+22=2x+40 | | 3(5+3×)-6×=2(4-3x)-7 | | -3z=60 | | 14x=4x−5 | | (n+8)+(n=12) | | 2(2x-3)+3x=x-21 | | -3a+-a=8 | | -3a+-a=83 | | 4x+8x+21=28x+12-3 | | 48-(3c-4)=4(c+7)+c | | 3a+-a=8 | | 7x+12=2x-18 | | 5.2b=46.8 | | 3p=9/16 | | 0.2x+8=0.16(3x-2) | | 2u+12u+-11=17 | | 4(4x-1.6)=2x-6.4 | | b-3.75=19.8 | | 4(v-15)=4 | | 0.12x+8=0.16(3x-2) | | 7y-17=60 | | |1-4x|-1=5 | | 5x+20=9x-90 | | 21x-3=13 | | r+14/2=2 | | 3=7-t | | 11x-4=10x+4 | | a+5.2=12.8 | | -5x-5(2x-17)=190 | | 3(x-9)=2(2x+7)-x | | 800x-0.99=600x+0.19 |

Equations solver categories