1/4x-3=1/6x+1

Simple and best practice solution for 1/4x-3=1/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-3=1/6x+1 equation:



1/4x-3=1/6x+1
We move all terms to the left:
1/4x-3-(1/6x+1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We get rid of parentheses
1/4x-1/6x-1-3=0
We calculate fractions
6x/24x^2+(-4x)/24x^2-1-3=0
We add all the numbers together, and all the variables
6x/24x^2+(-4x)/24x^2-4=0
We multiply all the terms by the denominator
6x+(-4x)-4*24x^2=0
Wy multiply elements
-96x^2+6x+(-4x)=0
We get rid of parentheses
-96x^2+6x-4x=0
We add all the numbers together, and all the variables
-96x^2+2x=0
a = -96; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-96)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-96}=\frac{-4}{-192} =1/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-96}=\frac{0}{-192} =0 $

See similar equations:

| 2k-5=97 | | -14=6x+10-2x | | h/3−7=2 | | 10x-4.4+3x=12x-1.1 | | 31.4=2•3.14r | | h3−7=2 | | -20=8+4u | | 19n-12=13n-13 | | 4(x-7)=6(x-6) | | 125-x=212 | | 5w+24=3(w+4) | | x/9+11=23 | | 5w+24=3(w+4 | | 7-r=2.5 | | n=12=48 | | 23+s=35 | | 3x-10=-54×7x | | 23x+-3.75=94 | | -1-h=14.3 | | 13x-19+20x-65=180 | | x-3(3x-1)-(x+5)=76 | | 6(2n+5=66 | | 2(x=4)=30 | | 16x-(7x-6)=33 | | -x2=-x13 | | 77=2(3.14)r | | -4g+11=5 | | 8k+24=5k-15 | | 5-p=-10 | | 18x-125=11x-55 | | 15=x(5) | | 4a-(2a-5)=7 |

Equations solver categories