1/4x-3=0.5x+12

Simple and best practice solution for 1/4x-3=0.5x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-3=0.5x+12 equation:



1/4x-3=0.5x+12
We move all terms to the left:
1/4x-3-(0.5x+12)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
1/4x-0.5x-12-3=0
We multiply all the terms by the denominator
-(0.5x)*4x-12*4x-3*4x+1=0
We add all the numbers together, and all the variables
-(+0.5x)*4x-12*4x-3*4x+1=0
We multiply parentheses
-0x^2-12*4x-3*4x+1=0
Wy multiply elements
-0x^2-48x-12x+1=0
We add all the numbers together, and all the variables
-1x^2-60x+1=0
a = -1; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·(-1)·1
Δ = 3604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3604}=\sqrt{4*901}=\sqrt{4}*\sqrt{901}=2\sqrt{901}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{901}}{2*-1}=\frac{60-2\sqrt{901}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{901}}{2*-1}=\frac{60+2\sqrt{901}}{-2} $

See similar equations:

| y=-12/2+9 | | 3/5w+1=2 | | v=3,6,19 | | 5x(x-2)+6x=30 | | 7+5x=12-10 | | 3x+1/9=2x-5/8 | | 8x*7x=(10x-2)*(5x+3) | | 7x5=12-10 | | (4x-7)+(2x+1)=90 | | 7x-5=12-10 | | 5(x-2)+6=30 | | -8=-11+b/8 | | (4x-7)=(2x+1)=90 | | 70+80+8x+2=180 | | 24=4a+6-2a | | 35t-28-(2+15t)=60 | | -3(5-15n)=15(3n-2 | | -13+5j=8-2j | | 17k=29 | | -7/3y=-35 | | -35-15n=153n-2 | | 5z+-20z−-16z=5 | | 3+4(5x-2)=x-19x+21 | | 65z=5+32z^2 | | X=90+-0.5y | | 9g-2g+2g-9g+2g=18 | | (x/2)+(x/5)=9/2 | | 4x+9=16x-6 | | 5x/9=4x/5-11 | | x/2+x/5=9/2 | | 235=133-w | | ((2p)/3)-12=-2 |

Equations solver categories