If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x-3(x-2)=-2.25x+1
We move all terms to the left:
1/4x-3(x-2)-(-2.25x+1)=0
Domain of the equation: 4x!=0We multiply parentheses
x!=0/4
x!=0
x∈R
1/4x-3x-(-2.25x+1)+6=0
We get rid of parentheses
1/4x-3x+2.25x-1+6=0
We multiply all the terms by the denominator
-3x*4x+(2.25x)*4x-1*4x+6*4x+1=0
We add all the numbers together, and all the variables
-3x*4x+(+2.25x)*4x-1*4x+6*4x+1=0
We multiply parentheses
8x^2-3x*4x-1*4x+6*4x+1=0
Wy multiply elements
8x^2-12x^2-4x+24x+1=0
We add all the numbers together, and all the variables
-4x^2+20x+1=0
a = -4; b = 20; c = +1;
Δ = b2-4ac
Δ = 202-4·(-4)·1
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{26}}{2*-4}=\frac{-20-4\sqrt{26}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{26}}{2*-4}=\frac{-20+4\sqrt{26}}{-8} $
| −11x−1=-8x-13 | | x+9.9=6.2 | | X=12-1÷3x | | x+12.7=15 | | -4(5x+10)=-2(10x+20 | | x+7.3=10.9 | | 295=129-w | | 15x-4+4x+5=65 | | 24=-4x+8 | | 3(r+2)+5(2r-3)=r(3+2)+4r+3 | | 8-2n=-114 | | 35=7(3a+3) | | 27=n-15+15+15=42=n | | Y/6=6y=24 | | 6^(3x+1)=9^x | | 2+(5+y)=y+20 | | 5(4x−10)2+19=44 | | 0.2(6r-5)=5 | | –6+–2c=4c= | | 7u^2+49=105 | | 3/5x-2/3x=23 | | -4+0.5n=9 | | -x24=175 | | -1/2(6p+16=7 | | -1.8+0.7n=15.7 | | 3x+2/4-1=5 | | 25x-9-3x=4(2x-3) | | 13^2+12^2=x^2 | | 16×17x+1=10×12x | | 6=8+x/5 | | 51+26+x=180 | | 2y+10=2+6y |