1/4x-1=1/6x+3

Simple and best practice solution for 1/4x-1=1/6x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-1=1/6x+3 equation:



1/4x-1=1/6x+3
We move all terms to the left:
1/4x-1-(1/6x+3)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x+3)!=0
x∈R
We get rid of parentheses
1/4x-1/6x-3-1=0
We calculate fractions
6x/24x^2+(-4x)/24x^2-3-1=0
We add all the numbers together, and all the variables
6x/24x^2+(-4x)/24x^2-4=0
We multiply all the terms by the denominator
6x+(-4x)-4*24x^2=0
Wy multiply elements
-96x^2+6x+(-4x)=0
We get rid of parentheses
-96x^2+6x-4x=0
We add all the numbers together, and all the variables
-96x^2+2x=0
a = -96; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-96)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-96}=\frac{-4}{-192} =1/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-96}=\frac{0}{-192} =0 $

See similar equations:

| (9x-7)=(7x+19) | | -10-7g=10+3g-8g | | 1/4x–1=1/6x+3 | | 1/2z+6=3/2(z+6) | | 5x-6=10-3x= | | -3+10t=-6+11t | | 2(12-x)=23-(2x-1) | | 2x/5+3/7=1-4x/7 | | 3x+2=7x+38 | | 21x+8x+14=215 | | ⅝=2x+¾ | | -2d=20-6d | | xx+3/3-x-1/2=4 | | -n^2n+3=0 | | 1x+5x=36 | | -6+3d=6+5d | | 3=3b−3 | | -x/5+11x/5-1=21 | | 2.2(1+0.4x)=-5x+40.42 | | |-3x+7|=8 | | 21=3+9n+5n | | -1-3z=10z+5+7 | | -5(9+7x)=-360 | | –3k=–15 | | -12t+14=3t+74 | | 5.60+.4x=10+.2x | | 13(x-2)=-4(11+x)+1 | | 8x−20=2x+34 | | 4.3x-3.9=10.7 | | (x+1)^+2=18 | | -5c-5=2-4c | | .2(2x+3)=-0.6(x+9) |

Equations solver categories