1/4x+18=x.5

Simple and best practice solution for 1/4x+18=x.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+18=x.5 equation:



1/4x+18=x.5
We move all terms to the left:
1/4x+18-(x.5)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x-(+x.5)+18=0
We get rid of parentheses
1/4x-x.5+18=0
We multiply all the terms by the denominator
-(x.5)*4x+18*4x+1=0
We add all the numbers together, and all the variables
-(+x.5)*4x+18*4x+1=0
We multiply parentheses
-4x^2+18*4x+1=0
Wy multiply elements
-4x^2+72x+1=0
a = -4; b = 72; c = +1;
Δ = b2-4ac
Δ = 722-4·(-4)·1
Δ = 5200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5200}=\sqrt{400*13}=\sqrt{400}*\sqrt{13}=20\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-20\sqrt{13}}{2*-4}=\frac{-72-20\sqrt{13}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+20\sqrt{13}}{2*-4}=\frac{-72+20\sqrt{13}}{-8} $

See similar equations:

| -17+5x=5(x-8)+8 | | 9x-8x=-0.25 | | 3/4x+1/4=7 | | 6(w-5)-4w=10 | | X÷40-x+20÷60=2 | | -g=-2g+8 | | 5u=-10+10u | | (3x+5)°=(8x-14) | | 2m-4+6m=0 | | (3x+5)°=(8x-14)° | | X/40-x+20/60=2 | | -2m4+6m=0 | | 3x+6-4=2-3x+12 | | -6x+8=-3-10 | | +k17=(−14)+k | | 11k=17 | | 3x+5+x+3=40 | | x+3/4=5/2+x-6/7 | | 11k/11=17/11 | | m+17=46 | | 4(2x+2)=-34-6x | | 9e+4=-5e+14+13e9e+4=−5e+14+13e9, | | -4x-2(3x+2)=-44 | | 4^x+2(2^x)-8=0 | | 9+16=-5(3x-5) | | -2(-4x-3)-5+3=-3 | | -2y-7=9(Y+9) | | .5.2=a-0.4 | | m+8=40 | | -16+31=-5(x+6) | | 8x+1=169 | | -3(x+7)+7=-14 |

Equations solver categories