1/4x+10=1/2x-20

Simple and best practice solution for 1/4x+10=1/2x-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+10=1/2x-20 equation:



1/4x+10=1/2x-20
We move all terms to the left:
1/4x+10-(1/2x-20)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x-20)!=0
x∈R
We get rid of parentheses
1/4x-1/2x+20+10=0
We calculate fractions
2x/8x^2+(-4x)/8x^2+20+10=0
We add all the numbers together, and all the variables
2x/8x^2+(-4x)/8x^2+30=0
We multiply all the terms by the denominator
2x+(-4x)+30*8x^2=0
Wy multiply elements
240x^2+2x+(-4x)=0
We get rid of parentheses
240x^2+2x-4x=0
We add all the numbers together, and all the variables
240x^2-2x=0
a = 240; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·240·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*240}=\frac{0}{480} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*240}=\frac{4}{480} =1/120 $

See similar equations:

| 4y+5-2y=4+y+3 | | a^2+50^2=51^2 | | 1÷12(4c+57)=1÷4(2c+9) | | 12^2+b^2=18^2 | | y=-2/3*6+1 | | 6x-19=3x-10 | | 7n+3=28 | | n7+3=59 | | a^2+25^2=38^2 | | 7c+6=4.5 | | y=(-2/3)6+1 | | 12x+19x-6+5=-2x+5-6 | | 7m^2-20m-32=0 | | 3y=(5y+1)+1 | | y=(-2)0+3 | | y=(-2)2+3 | | 0.2x-0.6x-23=1 | | 5g+80=87 | | y=(-2)(-3)+3 | | 2^2+6^2=c^2 | | 18+160t-49t^2=0 | | 2x÷5=4÷7 | | y=(-2)5+3 | | 56=63-d | | (3,-4)m=6 | | 1/3(6x-9)=1/2(8x-4) | | 0.08(y-5)+0.06y=0.04y-0.2 | | 1.8+16t-4.9t^2=0 | | (x+25)=3(x+5) | | 9^2+b^2=41^2 | | 63x-35+35=35 | | -0.1+v/2.2=7.4 |

Equations solver categories