If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x+1/2x=1/4x+44
We move all terms to the left:
1/4x+1/2x-(1/4x+44)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+44)!=0We get rid of parentheses
x∈R
1/4x+1/2x-1/4x-44=0
We calculate fractions
(-2x+1)/8x^2+4x/8x^2-44=0
We multiply all the terms by the denominator
(-2x+1)+4x-44*8x^2=0
We add all the numbers together, and all the variables
4x+(-2x+1)-44*8x^2=0
Wy multiply elements
-352x^2+4x+(-2x+1)=0
We get rid of parentheses
-352x^2+4x-2x+1=0
We add all the numbers together, and all the variables
-352x^2+2x+1=0
a = -352; b = 2; c = +1;
Δ = b2-4ac
Δ = 22-4·(-352)·1
Δ = 1412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1412}=\sqrt{4*353}=\sqrt{4}*\sqrt{353}=2\sqrt{353}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{353}}{2*-352}=\frac{-2-2\sqrt{353}}{-704} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{353}}{2*-352}=\frac{-2+2\sqrt{353}}{-704} $
| 5x+200=30x | | 4l-3=8l+5 | | 8/n=10.7 | | |5x+2|-18=-11 | | 200=5×2^n | | -4(x+2=x+7) | | -4(x+2=x+7 | | (x-15)=3x-57 | | -x–9=-7 | | (12-2x)*(9-2x)*x=54 | | x+.5x=38 | | 7x/5=3x/2+4 | | 8t-4=t | | -x–9=-7. | | 54=(12-2x)*(9-2x)*x | | 15^x=1/15 | | 4^(x-1)=8^3 | | 8-4k=24 | | -3-8r=-1-6r | | 9x=30x-x-54 | | 5x-5=-3(-×-1) | | 6+3(13-2)-25=x | | 5x-8=1+5x | | 5/8x=360 | | 35+p=105 | | -0.10(34)+0.50x=0.05(x-14) | | 5-4n+8=18 | | -5i-6=4 | | 0.5q=6 | | —0.10(34)+0.50x=0.05(x-14) | | 5x-1=3+6x | | 8300=4.9xT |