1/4s+20=-0.5s-4

Simple and best practice solution for 1/4s+20=-0.5s-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4s+20=-0.5s-4 equation:



1/4s+20=-0.5s-4
We move all terms to the left:
1/4s+20-(-0.5s-4)=0
Domain of the equation: 4s!=0
s!=0/4
s!=0
s∈R
We get rid of parentheses
1/4s+0.5s+4+20=0
We multiply all the terms by the denominator
(0.5s)*4s+4*4s+20*4s+1=0
We add all the numbers together, and all the variables
(+0.5s)*4s+4*4s+20*4s+1=0
We multiply parentheses
0s^2+4*4s+20*4s+1=0
Wy multiply elements
0s^2+16s+80s+1=0
We add all the numbers together, and all the variables
s^2+96s+1=0
a = 1; b = 96; c = +1;
Δ = b2-4ac
Δ = 962-4·1·1
Δ = 9212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9212}=\sqrt{196*47}=\sqrt{196}*\sqrt{47}=14\sqrt{47}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-14\sqrt{47}}{2*1}=\frac{-96-14\sqrt{47}}{2} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+14\sqrt{47}}{2*1}=\frac{-96+14\sqrt{47}}{2} $

See similar equations:

| 0.20(y-3)+0.08y=0.04y-0.09(20) | | 0.18(y-4)+0.08y=0.10y-0.03(60) | | 6w=4=4w+1 | | 14b=11 | | 14b =11 | | 6x+5/8=7x+7/8 | | 4÷3x+1=12÷3 | | -55.00+8.50x=123 | | 3-(5y+2(y-1)+4)=5-(2(y-3)-3(y-2)) | | 4÷3x+1=12÷4 | | y^2+3y+70=180 | | x=7x+60. | | 3x+3.25=(5/6)x | | 0.5x+0.25(70)=42.5 | | (3*4²)x-3=15 | | 3*4²x-3=15 | | 15x+13x=2 | | 15⋅(x+39)=8 | | (D^2-D+5)y=0 | | x²-x+2=0 | | X(5x+2)(6x-18)=0 | | 1200=-60x | | 6p=2+p-3=8p-8 | | n(n-3)=340 | | 12n-5=7n+50 | | 7x-6=8-4x | | 7n-3=4n-9 | | 15+(x-3)=7+5x | | 8(2+3x)+2(4-5x)=17 | | 36x3+4x=0 | | 5a-14=8+3a | | 25y+7=10 |

Equations solver categories