1/4k.k.k.k.k.k.k-3k.k.k=2

Simple and best practice solution for 1/4k.k.k.k.k.k.k-3k.k.k=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4k.k.k.k.k.k.k-3k.k.k=2 equation:



1/4k.k.k.k.k.k.k-3k.k.k=2
We move all terms to the left:
1/4k.k.k.k.k.k.k-3k.k.k-(2)=0
Domain of the equation: 4k.k.k.k.k.k.k!=0
k!=0/1
k!=0
k∈R
We multiply all the terms by the denominator
-(3k.k.k)*4k.k.k.k.k.k.k-2*4k.k.k.k.k.k.k+1=0
We add all the numbers together, and all the variables
-(+3k.k.k)*4k.k.k.k.k.k.k-2*4k.k.k.k.k.k.k+1=0
We multiply parentheses
-12k^2-2*4k.k.k.k.k.k.k+1=0
Wy multiply elements
-12k^2-8k+1=0
a = -12; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·(-12)·1
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{7}}{2*-12}=\frac{8-4\sqrt{7}}{-24} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{7}}{2*-12}=\frac{8+4\sqrt{7}}{-24} $

See similar equations:

| 6/5-2y=4 | | h/3+-13=-10 | | X+4/5=1-x+6/7 | | 3m+2+1=-5+3m-m | | 2/3(x-6)=2x+8 | | 2s-5s+5s=20 | | (2x-5)=(4x-8) | | 2/3(x-6)=2x=8 | | 8m-7-2=15 | | 4(3x+6)=-37+49 | | 16w-7w-w=8 | | 23=6(-x-3) | | 2m+18-3m=-18+m) | | 38=27x-7x | | 9.12+0.5x=17 | | 15+6x=1/2(32+12x-1 | | 14p-8p+3p-5p=4 | | 2/3x+4=3/4 | | 3-2(4-x)=7-2x | | -2(4x-2)+6x=8+2(7x-5) | | -2a-1a=12+3 | | 8w+11w-6w=15 | | 2j+13=-0.6 | | (2x+25)+(9x-5)=95 | | 6t-5t=18 | | 7b+2b-5b+3b+2b=18 | | 25(2x-10=5(x+40+3x | | X+7/18=4/9+x-9/3 | | 6.8=2.4-0.6y | | (5x+6)^2=2 | | 12+7h+h-10=10h+12-2h-10 | | -4(-4x+8)-3x=7(x-4)-1 |

Equations solver categories