1/4k-4=3/7k+6

Simple and best practice solution for 1/4k-4=3/7k+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4k-4=3/7k+6 equation:



1/4k-4=3/7k+6
We move all terms to the left:
1/4k-4-(3/7k+6)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 7k+6)!=0
k∈R
We get rid of parentheses
1/4k-3/7k-6-4=0
We calculate fractions
7k/28k^2+(-12k)/28k^2-6-4=0
We add all the numbers together, and all the variables
7k/28k^2+(-12k)/28k^2-10=0
We multiply all the terms by the denominator
7k+(-12k)-10*28k^2=0
Wy multiply elements
-280k^2+7k+(-12k)=0
We get rid of parentheses
-280k^2+7k-12k=0
We add all the numbers together, and all the variables
-280k^2-5k=0
a = -280; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-280)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-280}=\frac{0}{-560} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-280}=\frac{10}{-560} =-1/56 $

See similar equations:

| Y=-7-2x+11 | | 2^n=20000 | | x+1=-4+3x | | p/5=-4 | | (5x+15)+(7x-3)=180 | | 70+50+1+6x=180 | | (8x-34)°+(5x+2)°=90 | | x+x-15+0,5(x-15)=3(x-15) | | -54+3k=9 | | 8t=13=4 | | –7b=–8b+9 | | 5x-19=38+x+14 | | 6+3(6x-7)=18x+-5 | | 8-2d=6 | | 3.6/x=5 | | 20-x=≤4.2 | | X^w/11-21=1311 | | 8-2d=-6 | | X^w/11•21=1311 | | 21+7/8r=-21 | | 4a=2a-3=6 | | 12x-815;x=0;x=1 | | g=–2 | | x*(11-x)=72 | | -4x+3=-6x+13 | | 4(1–3x=)+7x–8 | | 2x+3x+9=64 | | 10y-6y+1=21 | | 19j+2=–5+9+19j | | 3(-9-4​x​)–4=5 | | 4t+2=2t | | -x^2+11x-72=0 |

Equations solver categories