If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4a-4/9+5/6a=2/9
We move all terms to the left:
1/4a-4/9+5/6a-(2/9)=0
Domain of the equation: 4a!=0
a!=0/4
a!=0
a∈R
Domain of the equation: 6a!=0We add all the numbers together, and all the variables
a!=0/6
a!=0
a∈R
1/4a+5/6a-4/9-(+2/9)=0
We get rid of parentheses
1/4a+5/6a-4/9-2/9=0
We calculate fractions
(-288a^2-4)/1944a^2+486a/1944a^2+1620a/1944a^2=0
We multiply all the terms by the denominator
(-288a^2-4)+486a+1620a=0
We add all the numbers together, and all the variables
(-288a^2-4)+2106a=0
We get rid of parentheses
-288a^2+2106a-4=0
a = -288; b = 2106; c = -4;
Δ = b2-4ac
Δ = 21062-4·(-288)·(-4)
Δ = 4430628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4430628}=\sqrt{36*123073}=\sqrt{36}*\sqrt{123073}=6\sqrt{123073}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2106)-6\sqrt{123073}}{2*-288}=\frac{-2106-6\sqrt{123073}}{-576} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2106)+6\sqrt{123073}}{2*-288}=\frac{-2106+6\sqrt{123073}}{-576} $
| 40/3+6p=20 | | w/7=-28 | | 40/3*6p=20 | | 3v+10v=-52 | | 54=9=9y | | 19=-4+2/5x+4 | | 4/7t-1/14t=-11/2 | | 30y^2+70y=0 | | 91-x=170 | | 3p-8=7+8p | | 246=69-x | | a^2+6-14=0 | | 144-y=191 | | 5a÷9=3a-1 | | x+7+x+93=180 | | 202=53-v | | -9*(2^(x))=-13 | | 3a-28=2a+12 | | -9*(2^x)=-13 | | 7x-11/10=1 | | -9*2^x=-13 | | 4x-4=-4x+4 | | 3x-4=17-x | | -10x+14=-10x+12 | | 6y-4=8y+5 | | 5u-8=32 | | -3n-3=-51 | | -31=3(u-2)-8u | | 36=-2x-2(x-4) | | 12(5/8)+3=y | | 5.4=9.4-0.5x | | (4x-3)^2=-16 |