1/4+(1/2)x=4

Simple and best practice solution for 1/4+(1/2)x=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4+(1/2)x=4 equation:



1/4+(1/2)x=4
We move all terms to the left:
1/4+(1/2)x-(4)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/2)x-4+1/4=0
We add all the numbers together, and all the variables
(+1/2)x-4+1/4=0
We multiply parentheses
x^2-4+1/4=0
We multiply all the terms by the denominator
x^2*4+1-4*4=0
We add all the numbers together, and all the variables
x^2*4-15=0
Wy multiply elements
4x^2-15=0
a = 4; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·4·(-15)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*4}=\frac{0-4\sqrt{15}}{8} =-\frac{4\sqrt{15}}{8} =-\frac{\sqrt{15}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*4}=\frac{0+4\sqrt{15}}{8} =\frac{4\sqrt{15}}{8} =\frac{\sqrt{15}}{2} $

See similar equations:

| x=54=50 | | 3x-2=4. | | m/(-2.5)=-3 | | -2+5u=33 | | 75=15xx= | | (x-8)^(2)=24 | | k/9+2=3 | | (4x+4)(8x+2)=162 | | 4(x)-1)=2x-19 | | -8+8=-6x+20 | | –49+3h=8 | | k/4+9=6 | | -2+25x+17=36 | | 5(3x-1)=(7x+1) | | (0.5y)-6=12 | | 1/7t=8 | | 18=2/a | | 18=Q/a | | 54=3x-3+2x | | -12j+7=-12 | | 8/3=2-9/7v+4 | | 180=x+(2x-30) | | 8/18=n/36 | | 7x+8=3x+60 | | 2x+20-32=2(x-6) | | 19+m=26 | | 90°=(4x+10)° | | 1.5x-200=0.5x=180 | | c10 +3 = 2 | | 13t-12t=16 | | -3(x–5)=45 | | (5x+1)+(x+16)=(2x+11 |

Equations solver categories