If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(2x-1)=1/3(2-x)
We move all terms to the left:
1/4(2x-1)-(1/3(2-x))=0
Domain of the equation: 4(2x-1)!=0
x∈R
Domain of the equation: 3(2-x))!=0We add all the numbers together, and all the variables
x∈R
1/4(2x-1)-(1/3(-1x+2))=0
We calculate fractions
(3x(-)/(4(2x-1)*3(-1x+2)))+(-4x2/(4(2x-1)*3(-1x+2)))=0
We calculate terms in parentheses: +(3x(-)/(4(2x-1)*3(-1x+2))), so:
3x(-)/(4(2x-1)*3(-1x+2))
We add all the numbers together, and all the variables
3x0/(4(2x-1)*3(-1x+2))
We multiply all the terms by the denominator
3x0
We add all the numbers together, and all the variables
3x
Back to the equation:
+(3x)
We calculate terms in parentheses: +(-4x2/(4(2x-1)*3(-1x+2))), so:We get rid of parentheses
-4x2/(4(2x-1)*3(-1x+2))
We multiply all the terms by the denominator
-4x2
We add all the numbers together, and all the variables
-4x^2
Back to the equation:
+(-4x^2)
-4x^2+3x=0
a = -4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-4)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-4}=\frac{-6}{-8} =3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-4}=\frac{0}{-8} =0 $
| 4(-10+x)=-116 | | x2=16x-63 | | 15x+9=9x-3 | | 4x^2+9x+5=5 | | 1/3x+1/4=4 | | 14x-2=8x+6(11x) | | |-6x|=8 | | 2/4p=3/5 | | -31/2=1/2x+1/2x+x. | | 10x-2=2x+2 | | -n+7+6n=6n-1 | | 19x-13+12x+43=180 | | -n+76n=6n-1 | | 3(x–4)(2x–3)=0 | | -(x+3)+2x-4=5 | | (10x-7)(-2x+4)=0 | | -3(x-4)+4x=2-8 | | -5x+2=4x+47 | | 186=-6(1+8k) | | X+4/x-2=7 | | 6a-7-5a=-8+9 | | 8x-16=4x+40 | | x^2-x-20=03x^2-21x=0 | | 9a+8-8a=5 | | 1/4-3x=-2/5+3/10 | | 2x-7=1-x | | -6x+20=-2x+28 | | 9a+8−8a=5 | | 6x*6x-25x+21=0 | | x*x/2*2x=216 | | 2/3=3e | | 9+4a=-6+7a |