If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(28x+28)-19=-2/3(18x-18)
We move all terms to the left:
1/4(28x+28)-19-(-2/3(18x-18))=0
Domain of the equation: 4(28x+28)!=0
x∈R
Domain of the equation: 3(18x-18))!=0We calculate fractions
x∈R
(3x1/(4(28x+28)*3(18x-18)))+(-(-8x2)/(4(28x+28)*3(18x-18)))-19=0
We calculate terms in parentheses: +(3x1/(4(28x+28)*3(18x-18))), so:
3x1/(4(28x+28)*3(18x-18))
We multiply all the terms by the denominator
3x1
We add all the numbers together, and all the variables
3x
Back to the equation:
+(3x)
We calculate terms in parentheses: +(-(-8x2)/(4(28x+28)*3(18x-18))), so:determiningTheFunctionDomain 8x^2+3x-19=0
-(-8x2)/(4(28x+28)*3(18x-18))
We add all the numbers together, and all the variables
-(-8x^2)/(4(28x+28)*3(18x-18))
We multiply all the terms by the denominator
-(-8x^2)
We get rid of parentheses
8x^2
Back to the equation:
+(8x^2)
a = 8; b = 3; c = -19;
Δ = b2-4ac
Δ = 32-4·8·(-19)
Δ = 617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{617}}{2*8}=\frac{-3-\sqrt{617}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{617}}{2*8}=\frac{-3+\sqrt{617}}{16} $
| 0.25a+3.8=4.6 | | 16x+4x=30 | | x^2+4x–21=0 | | y+73=y5 | | x2+4x–21=0 | | 60-5x=120 | | -3x+63=48 | | x^2-2x+9=4 | | 4r-2=22 | | -6(u+2)=3u+24 | | 117+-3x=90 | | 13x+21=6x | | 0,2^x+0.04^x=2 | | 97-6x=67 | | 5w+6+-12=29 | | S(x)=3 | | -5x+99=84 | | 85+-2x=65 | | 5x+4=+24 | | v2+17v+16=0 | | 66-4x=50 | | 10x-(8x-4)=16 | | 4.1(x-2.7)=254 | | 2x-2=-200 | | 5/14=4/x | | 18-8x=-54 | | 0.5x+0.5(20)=0.3(x+10) | | 0.5x-2=-8 | | 3x-6=-3x+9 | | 2x-7+71=142 | | 4(d+3)–2(d+7)+5=5(d+12) | | 2(3x+3)=11x+1-5x+5 |