If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(20x+16)=-1/2(10x+32)
We move all terms to the left:
1/4(20x+16)-(-1/2(10x+32))=0
Domain of the equation: 4(20x+16)!=0
x∈R
Domain of the equation: 2(10x+32))!=0We calculate fractions
x∈R
(2x1/(4(20x+16)*2(10x+32)))+(-(-4x2)/(4(20x+16)*2(10x+32)))=0
We calculate terms in parentheses: +(2x1/(4(20x+16)*2(10x+32))), so:
2x1/(4(20x+16)*2(10x+32))
We multiply all the terms by the denominator
2x1
We add all the numbers together, and all the variables
2x
Back to the equation:
+(2x)
We calculate terms in parentheses: +(-(-4x2)/(4(20x+16)*2(10x+32))), so:determiningTheFunctionDomain 4x^2+2x=0
-(-4x2)/(4(20x+16)*2(10x+32))
We add all the numbers together, and all the variables
-(-4x^2)/(4(20x+16)*2(10x+32))
We multiply all the terms by the denominator
-(-4x^2)
We get rid of parentheses
4x^2
Back to the equation:
+(4x^2)
a = 4; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·4·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*4}=\frac{-4}{8} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*4}=\frac{0}{8} =0 $
| -6x-42=-10x+62 | | 2x*3x=600 | | 10/4+7/8=g | | 4q–3=6q+4–2q-1 | | -4/5x-0.4=-5 | | 2x+(x-15)=495 | | ¼x-16=-1 | | 5(f–2)=22 | | 5x-13=5x | | 6(×+4)+1=x+5 | | 0.78x-0.40=8.14 | | 2^0+2^1-2x=9.2^-1-2x | | 2.5x=2x+10 | | 4(2x+5)=-5(4x-5)+2x | | 9(m-3)+3m=7 | | f(10)=5010 | | 9x-7=2x-1=7x | | 1x+1=5x+3 | | 7(p-9)=(-34.3) | | s-17=-30 | | 6x-170=-4x+110 | | 12.5a-8=17 | | -1+8n=-129 | | 2/3g=-14 | | -7a-7a=-6(a+3)+2(-4a-7) | | g/2+-10=-13 | | 6x+20=-20x+25+2x | | 4(-2x+12)=64 | | 2u+9=8+21 | | -8n+3=-6-5n | | 8x+10=10+2x | | -3(2n-6)=27 |