If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(16-4x)=1/2(2x+16)
We move all terms to the left:
1/4(16-4x)-(1/2(2x+16))=0
Domain of the equation: 4(16-4x)!=0
x∈R
Domain of the equation: 2(2x+16))!=0We add all the numbers together, and all the variables
x∈R
1/4(-4x+16)-(1/2(2x+16))=0
We calculate fractions
(2x2/(4(-4x+16)*2(2x+16)))+(-4x0/(4(-4x+16)*2(2x+16)))=0
We calculate terms in parentheses: +(2x2/(4(-4x+16)*2(2x+16))), so:
2x2/(4(-4x+16)*2(2x+16))
We multiply all the terms by the denominator
2x2
We add all the numbers together, and all the variables
2x^2
Back to the equation:
+(2x^2)
We calculate terms in parentheses: +(-4x0/(4(-4x+16)*2(2x+16))), so:We get rid of parentheses
-4x0/(4(-4x+16)*2(2x+16))
We multiply all the terms by the denominator
-4x0
We add all the numbers together, and all the variables
-4x
Back to the equation:
+(-4x)
2x^2-4x=0
a = 2; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·2·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*2}=\frac{8}{4} =2 $
| 3x-5=10x+14 | | 9x+19=-2x+55 | | 50+10x0+7+9=x | | 5/3 x=24 | | 2(4y+-10)=-60 | | 18/24=17/x | | -8a=11=37 | | 5×(0×4)=(5×n)×4= | | -7(-3w+4)-2w=7(w-5)-2 | | -4x3+12x-9x=-5 | | -3|2x+7|=15 | | 4(5y+-8)=-132 | | 4(6-5v)+19=3 | | 5x-1=2.8 | | 8.0-f=6.2 | | 10=-7/4y+7+y/4 | | 8(w-5)-2w=-4(w-2) | | 2(x-3)+4(-2x+3)=6 | | 3(-2w+1)=-45 | | 3m+81/4=93m= | | 4(c-2)=4(c-1) | | Y=-4x^2+8 | | 5x^2=32+3x^2 | | 7m-12m-6=14 | | 8w(w-5)-2w=-4(w-2) | | 37=2w+7w-8 | | 5v+2v-8=-23 | | |7a-10|=10a | | y=3−4-3 | | 3+4(a+2)=-5(a+2) | | x+4.7=8.1x | | 2x=1=39 |