If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(12x+36)-15=-1/5(20x-35)
We move all terms to the left:
1/4(12x+36)-15-(-1/5(20x-35))=0
Domain of the equation: 4(12x+36)!=0
x∈R
Domain of the equation: 5(20x-35))!=0We calculate fractions
x∈R
(5x2/(4(12x+36)*5(20x-35)))+(-(-4x1)/(4(12x+36)*5(20x-35)))-15=0
We calculate terms in parentheses: +(5x2/(4(12x+36)*5(20x-35))), so:
5x2/(4(12x+36)*5(20x-35))
We multiply all the terms by the denominator
5x2
We add all the numbers together, and all the variables
5x^2
Back to the equation:
+(5x^2)
We calculate terms in parentheses: +(-(-4x1)/(4(12x+36)*5(20x-35))), so:a = 5; b = 4; c = -15;
-(-4x1)/(4(12x+36)*5(20x-35))
We add all the numbers together, and all the variables
-(-4x)/(4(12x+36)*5(20x-35))
We multiply all the terms by the denominator
-(-4x)
We get rid of parentheses
4x
Back to the equation:
+(4x)
Δ = b2-4ac
Δ = 42-4·5·(-15)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{79}}{2*5}=\frac{-4-2\sqrt{79}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{79}}{2*5}=\frac{-4+2\sqrt{79}}{10} $
| s-70/4=6 | | 9(y-5)=2y-3 | | 47.5=10+7.50=55*h | | 19x-(7x-9)=69 | | 3(2z+6)+4=5(z-3) | | 54=n(n-3)/2 | | 34.95+0.12t=0.26t | | w-9/2=6 | | 5•-4y=10 | | y=47+0.25*55 | | y=47+0.25(55) | | 0.2^x=0.0035 | | 8(x=8)=4+8x | | 5x-8/4=3 | | (2x+10x=28) | | 4x3-18x2=8x | | 2(x-5)-7x=35 | | 2x-x+6=x-x-8 | | 2x²+8=48 | | 2x+2(2+x)=520 | | -15+6n=11n+5 | | 6x+3=x^2-8x-15 | | 6x+3=x^-8x-15 | | -8(3+7a)=-24–3a | | x+3x–36=36 | | i/54=6.2 | | |10n+6|=8n+10 | | 6x+17=92 | | 4a^2+12a+8=0 | | 15a^-2+22a^-1-5=0 | | 2=|8m-10| | | 5(p+30=-35 |