1/3y-3=5/6y+10

Simple and best practice solution for 1/3y-3=5/6y+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3y-3=5/6y+10 equation:



1/3y-3=5/6y+10
We move all terms to the left:
1/3y-3-(5/6y+10)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 6y+10)!=0
y∈R
We get rid of parentheses
1/3y-5/6y-10-3=0
We calculate fractions
6y/18y^2+(-15y)/18y^2-10-3=0
We add all the numbers together, and all the variables
6y/18y^2+(-15y)/18y^2-13=0
We multiply all the terms by the denominator
6y+(-15y)-13*18y^2=0
Wy multiply elements
-234y^2+6y+(-15y)=0
We get rid of parentheses
-234y^2+6y-15y=0
We add all the numbers together, and all the variables
-234y^2-9y=0
a = -234; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·(-234)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*-234}=\frac{0}{-468} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*-234}=\frac{18}{-468} =-1/26 $

See similar equations:

| -5d-3=-6d | | -4+3c=2c+5 | | (65+x)/2=90 | | (8c+3)/9=9 | | 6x+2=-2-1 | | 1/5x-9=9 | | 10(g+5)=29g+9) | | 6=-2k+2= | | 111+x+x=180 | | 21r/3-4=4;12 | | x−0.25(12−8x)=4(0.5x−3) | | 8x-6-2x=-3(x+8) | | 9-2n=7n | | -3j-j+-7j-7j=-18 | | 0.5=4.1x−2(1.3x−4) | | -6y+4y=-5y-70+20 | | 2(x)-(x-27)=x | | 15x-4=13x+2 | | 6m-8=4-6m | | 10w-10=-10w+10 | | 12+-3h=-15 | | -0.5m=6.75 | | 7m-4-2m=6 | | (9+x)-4=12 | | -p=p-6 | | 43=−2d+7 | | 3x-18=6x+17 | | b/7+5=-5 | | F(-10)=2x-3 | | 3.9a-1.5=6a+7.1 | | 17-(-5-p)=2(5p-16) | | 1+b=2b-8 |

Equations solver categories