1/3x-9=14x-17-13x

Simple and best practice solution for 1/3x-9=14x-17-13x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-9=14x-17-13x equation:



1/3x-9=14x-17-13x
We move all terms to the left:
1/3x-9-(14x-17-13x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(x-17)-9=0
We get rid of parentheses
1/3x-x+17-9=0
We multiply all the terms by the denominator
-x*3x+17*3x-9*3x+1=0
Wy multiply elements
-3x^2+51x-27x+1=0
We add all the numbers together, and all the variables
-3x^2+24x+1=0
a = -3; b = 24; c = +1;
Δ = b2-4ac
Δ = 242-4·(-3)·1
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-14\sqrt{3}}{2*-3}=\frac{-24-14\sqrt{3}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+14\sqrt{3}}{2*-3}=\frac{-24+14\sqrt{3}}{-6} $

See similar equations:

| 1/4m+3=12 | | 5/3x+1/3=212/3+7/3x | | 180=3x+17 | | 0.50(2x-10)=-4x+30 | | 5r+6=2r | | 4x=(+90) | | -3(g-4)=-3(g+4) | | x+x+75+125=180 | | 24-6g=18 | | 94=3x+4(1+3x) | | -3=q+11/2 | | 35=4f-15 | | 5x+6-5x=-4 | | x+2=22-x | | 2(f−18)=-8 | | h/18=17 | | (2x+1/3)=1x-2 | | 106=9x+7 | | -5+2m=4m-2m-13 | | d+6+d+6=d | | w/7+7.3=-10.2 | | 3x+7x=90. | | 4p+5(p+8)=94 | | 5-8v=7v | | 10x-14-12x+3=25 | | 12x-1=4+11x | | m/10-200=300 | | 28u=980 | | 23-4x=-49 | | (2r-1)-3=15 | | 18-17u=-2u-18-13u | | 1.50x+20=1.75x+10 |

Equations solver categories