1/3x-6=1/7x+2

Simple and best practice solution for 1/3x-6=1/7x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-6=1/7x+2 equation:



1/3x-6=1/7x+2
We move all terms to the left:
1/3x-6-(1/7x+2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 7x+2)!=0
x∈R
We get rid of parentheses
1/3x-1/7x-2-6=0
We calculate fractions
7x/21x^2+(-3x)/21x^2-2-6=0
We add all the numbers together, and all the variables
7x/21x^2+(-3x)/21x^2-8=0
We multiply all the terms by the denominator
7x+(-3x)-8*21x^2=0
Wy multiply elements
-168x^2+7x+(-3x)=0
We get rid of parentheses
-168x^2+7x-3x=0
We add all the numbers together, and all the variables
-168x^2+4x=0
a = -168; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-168)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-168}=\frac{-8}{-336} =1/42 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-168}=\frac{0}{-336} =0 $

See similar equations:

| -3(3y-2)-y=-4(y-4) | | 17^5t=10^8t | | 4x+2+5x-31=180 | | 5(-0.8y)+4y=0 | | 12+8n=66-n | | 3=q11 | | 2(4y=3)=16 | | 5(-0.8y)+y=0 | | 2=-9n+22=8 | | y+4(4)=9 | | y+4(0)=9 | | -17+2x=-7 | | y+4(-1)=9 | | 4x+3=6-4x | | 0.4b-3.2+1.2b=0 | | 2(3x+5)=20 | | 2(-0.8)+y=0 | | 3x•4=13 | | 24=6(-3=a) | | z/3=15 | | 3g+4(-5+4g)=1=g | | -7(p-6)=21 | | 1.5x+0.9=-0.45 | | 7x+7=11+x | | 9x+3=5x+83 | | 3(x−2)−9=−5(x−4) | | -3(x+2)=2×+4 | | 2t+9.5=28.5 | | 10x+9=17x+3 | | -0.6(s+0.2)=1.8 | | 30=10(b+5) | | X.y=80 |

Equations solver categories