If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x-6/3+1/2x+5/10=5/3
We move all terms to the left:
1/3x-6/3+1/2x+5/10-(5/3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/3x+1/2x-6/3+5/10-(+5/3)=0
We add all the numbers together, and all the variables
1/3x+1/2x-2+5/10-(+5/3)=0
We get rid of parentheses
1/3x+1/2x-2+5/10-5/3=0
We calculate fractions
180x^2/180x^2+20x/180x^2+90x/180x^2+(-100x)/180x^2-2=0
Fractions to decimals
20x/180x^2+90x/180x^2+(-100x)/180x^2-2+1=0
We multiply all the terms by the denominator
20x+90x+(-100x)-2*180x^2+1*180x^2=0
We add all the numbers together, and all the variables
110x+(-100x)-2*180x^2+1*180x^2=0
Wy multiply elements
-360x^2+180x^2+110x+(-100x)=0
We get rid of parentheses
-360x^2+180x^2+110x-100x=0
We add all the numbers together, and all the variables
-180x^2+10x=0
a = -180; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-180)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-180}=\frac{-20}{-360} =1/18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-180}=\frac{0}{-360} =0 $
| 7x-24=x-28 | | 10-2x=-3.4 | | 3(x+4)=6x+24 | | -1/3x-2/3=5/4x-3 | | -2/9x-4=7/18+4 | | 8m+13=7m+42 | | 5a+3a+8=300a= | | 4-2x=-x | | x-28=7x-24 | | -25+30x-9x2=0 | | -4/5b=-12 | | 7.8=x-2.5 | | 10-2r=-3.4 | | 30.3+m+40.8=180 | | X+2x+x-1+2x+2x-3=360 | | 5x^=3-4x | | -7+2(7b+8)=8b+28 | | 14x+6-3x=50 | | (3k+14)k=5 | | 8x+1.3=-14.7 | | 0=3Y-12x-6 | | 65=8d-9 | | 1/3b+6=18 | | X+2y+1=9 | | 10x=54=x | | 4y-4=2yy= | | Y=75x+425 | | 5/7f+5=5 | | (3/(x+8))-(2/(x-8))=5x/(x^2-64) | | -16+(-5x)=-1+10x | | m/6+-20=-15 | | 14+3n=5n–6 |