If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x-5=2x-35
We move all terms to the left:
1/3x-5-(2x-35)=0
Domain of the equation: 3x!=0We get rid of parentheses
x!=0/3
x!=0
x∈R
1/3x-2x+35-5=0
We multiply all the terms by the denominator
-2x*3x+35*3x-5*3x+1=0
Wy multiply elements
-6x^2+105x-15x+1=0
We add all the numbers together, and all the variables
-6x^2+90x+1=0
a = -6; b = 90; c = +1;
Δ = b2-4ac
Δ = 902-4·(-6)·1
Δ = 8124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8124}=\sqrt{4*2031}=\sqrt{4}*\sqrt{2031}=2\sqrt{2031}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{2031}}{2*-6}=\frac{-90-2\sqrt{2031}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{2031}}{2*-6}=\frac{-90+2\sqrt{2031}}{-12} $
| 6x=5x-8÷2 | | (2x-6)+(8x-14)=180 | | 9m-9m+2m=20 | | 6x+34x=9 | | -35u+21=-3u-90 | | =-(5x+1) | | 3u+3=1.2 | | 3(h-13)+1=13 | | 17/13=4/7x | | 〖(x+5)〗^2=10x | | -m-9+6m=-59 | | 7(r-85)=28 | | -4y-5=40y+2 | | -17-5x=28 | | 27=9(c-87) | | q+31=80 | | 3.1d-4.1=-1.8(8d+4) | | (4y-7)(6+y)=0 | | 6=0.006x | | -(7z-32)+20+(-24)=0 | | d+8=8 | | -3.9x=117 | | u-42=-4u-9 | | 2.7(m-13)=8.1 | | 0.6=0.006x | | X+x+4+x=180 | | g+79=21 | | 28-8n=-28 | | 15x=2+3x | | 1x+6=-4x-15 | | 0.4=0.04x | | 12x+6=6+6x |