1/3x-5=2/5x+12

Simple and best practice solution for 1/3x-5=2/5x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-5=2/5x+12 equation:



1/3x-5=2/5x+12
We move all terms to the left:
1/3x-5-(2/5x+12)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+12)!=0
x∈R
We get rid of parentheses
1/3x-2/5x-12-5=0
We calculate fractions
5x/15x^2+(-6x)/15x^2-12-5=0
We add all the numbers together, and all the variables
5x/15x^2+(-6x)/15x^2-17=0
We multiply all the terms by the denominator
5x+(-6x)-17*15x^2=0
Wy multiply elements
-255x^2+5x+(-6x)=0
We get rid of parentheses
-255x^2+5x-6x=0
We add all the numbers together, and all the variables
-255x^2-1x=0
a = -255; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-255)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-255}=\frac{0}{-510} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-255}=\frac{2}{-510} =-1/255 $

See similar equations:

| 1/2h(17)=119 | | e-12=-3 | | (6x+7)=(x+3) | | 39-w=221 | | 6x+7(4x-21)=159 | | -3c–12=-5+c | | X2-5x+5=0 | | 3x/12=9/4 | | 6x+7(4x-12)=159 | | 3x/12=11/4 | | 2/3x-7=9 | | 8+y=32/3 | | (5/7)+(5/2)+(11/12)=a | | f(2)=4(2)-5 | | 1/3•w=12 | | 10-2(5x-1)=6x-20 | | 8+y=31/2 | | 6x+4(2x-6)=46 | | 3n–5=7n+11 | | 42=18+x | | 7(3-u)+u+2u=5 | | X+2x+3(2x)=360 | | 2x+2(6x-18)=34 | | 2(x+4)=3(x+7)-1 | | (2x-8)(3x+6)=0 | | 3x*4+10=5x | | 3g-5=-8(6+5g) | | 0.5x-3=0.18x+5 | | 1/(x+3)+1/(x^2+5x+6)=0 | | -3(5+m)=-36 | | 0.4x-2=0.05x+5 | | 1.08(2t+2.50)+3=13.801.08(2t+2.50)+3=13.80 |

Equations solver categories